
Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 1

2018/9/6 Data Structures © Prof. Ren-Song Tsay 129

3.4

Subtyping and
Inheritance in

C++

Object Inheritance

 An object A could be used to define
another object B.

 Both objects and operations of A are
automatically inherited by B.
◦ house can inherit from building

• Advantages:

◦ Simplification of software development

◦ Easy to test and debug

◦ Reusability

◦ Flexibility

1302018/9/6 Data Structures © Prof. Ren-Song Tsay

C++ Inheritance

 Define a class in terms of another

class

◦ easier to create and maintain an application.

 The existing class = base class,

the new class = derived class.

 The derived class is a base class

◦ dog IS-A mammal

 A class can be derived from more than

one classes, i.e. inherit data and

functions from multiple base classes.
2018/9/6 Data Structures © Prof. Ren-Song Tsay 131

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 2

Process Geometry

 If to develop a program to process
various types of geometry.

 Operations on these primitives:
◦ Get number of vertices.

◦ Calculate the area of the primitive.

◦ Check whether it is convex or not.

132

Triangle Rectangle Trapezoid

…

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Implement Using Classes

133

class Rectangle {

public:

Rectangle (){

m_VN = 4;

mp_V = new Point [m_VN];

}

~Rectangle(){

delete [] mp_V;

mp_V = NULL;

}

double CalArea ();

bool isConvex();

int vtxNum() { return m_VN; }

private:

int m_VN;

Point* mp_V;

};

class Triangle {

public:

Triangle (){

m_VN = 3;

mp_V = new Point [m_VN];

}

~Triangle (){

delete [] mp_V;

mp_V = NULL;

}

double CalArea ();

bool isConvex();

int vtxNum() { return m_VN; }

private:

int m_VN;

Point* mp_V;

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

What’s the Problem?

 Duplicated codes in both classes!

 If need to design 100 or more types of

geometry?

 If need to add another “common”

data member or function?

 Will need to maintain all the classes!

1342018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 3

Polygon Base Class

 Polygon is an abstract type of geometry.

 Triangle and rectangle are special

polygons.

 But how do we let the triangle and

rectangle classes share the same code

through using polygon?

 Don’t worry! C++ will be your

lifesaver!

1352018/9/6 Data Structures © Prof. Ren-Song Tsay

Class Inheritance in C++

 A mechanism to relate one class object
to another one.

 Define a “IS-A” relationships between
objects.
◦ Type B IS-A data type of Type A if B is a

specialized version of A and A is more
general than B, e.g., Triangle IS-A Polygon
and Rectangle IS-A Polygon.

 Members (data and functions) in Type A
are implicitly copied to Type B.

 Reusability of code

1362018/9/6 Data Structures © Prof. Ren-Song Tsay

Class Diagram of Inheritance

137

3.4

class

Polygon

class

Triangle

class

Rectangle

“IS-A” relationships

Base class

Derived class
2018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 4

Inherit the Polygon Class

138

3.4

class Polygon {

public:

Polygon (){

m_VN = 0;

mp_V = NULL;

}

~Polygon (){

delete [] mp_V;

mp_V = NULL;

}

double CalArea () { return 0.0;}

bool isConvex() { return true; }

int vtxNum() { return m_VN; }

protected:

int m_VN;

Point* mp_V;

};

class Triangle: public Polygon {

public:

Triangle (){

m_VN = 3;

mp_V = new Point [m_VN];

}

~Triangle (){}

double CalArea ();

};

Class Rectangle: public Polygon {

public:

Rectangle (){

m_VN = 4;

mp_V = new Point [m_VN];

}

~Rectangle (){}

double CalArea ();

};
2018/9/6 Data Structures © Prof. Ren-Song Tsay

Access Specifier of Inheritance

 “class Triangle: public Polygon”

indicates the triangle class inherits all

the non-private members (data and

functions) from Polygon

 The access specifier could be public,

protected and private.

1392018/9/8 Data Structures © Prof. Ren-Song Tsay

https://www.learncpp.com/cpp-tutorial/115-inheritance-and-access-specifiers/

Access Specifier: public

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : public Polygon

{

private:

protected:

public :

};

int x;

int y;

int z;

Int y;

Int z;

//CANNOT ACCESS

private member of base

class

X

1402018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 5

Access Specifier: protected

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : protected
Polygon

{

private:

protected:

public :

};

int x;

int y;

int z;

Int y;

Int z;

X

1412018/9/6 Data Structures © Prof. Ren-Song Tsay

Access Specifier: private

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : private Polygon

{

private:

protected:

public :

};

int y;

int z;

Int y;

Int z;

int x; X

1422018/9/6 Data Structures © Prof. Ren-Song Tsay

Specialization

 Some members (data and functions) are
specialized in different class.
◦ Triangle and Rectangle use different area

calculation, e.g., specialized CalArea()
function.

 Put these non-common members in
private block of base class. Derived
class thus cannot access these
members (Optional)

 Re-declare the members (data and
functions) in the derived class.
(overriding)

1432018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 6

Overriding

144

class Polygon {

public:

…

double CalArea () { return 0.0;}

…

};

class Triangle : public Polygon {

public:

…

// overriding CalArea function

double CalArea () {

// calculate triangle area

}

};

Class Rectangle : public Polygon {

public:

…

// overriding CalArea function

double CalArea (){

// calculate rectangle area

/* if you want to access the

original base class function*/

Polygon::CalArea();

}

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Overloading v.s. Overriding

 Function overloading:
◦ Two or more functions with the same name

but different signatures in the same scope or
one in base class and another in derived
class.

 Function overriding:
◦ A different implementation of the same

function in the inherited class.

◦ Functions would have the same signature,
but different implementation.

◦ Only exist in class inheritance.

145

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Last derived
class

2nd derived
class

1st derived
class

Base class

Initialization

 The order of calling constructors:

 The order of calling destructors:

 Use Initialization Lists to initialize base

class in derived class via constructor

146

Base class
1st derived

class
2nd derived

class
Last derived

class

2018/9/6 Data Structures © Prof. Ren-Song Tsay

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding
http://www.cprogramming.com/tutorial/initialization-lists-c++.html

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 7

A Constructor Example

147

class Foo

{

public:

Foo() { std::cout << "Foo's

constructor" << std::endl; }

};

class Bar: public Foo

{

public:

Bar() { std::cout << "Bar's

constructor" << std::endl; }

};

int main(){

Bar bar;

}

Output:

Foo's constructor

Bar's constructor

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

 A mechanism allow you to manipulate

different objects through the

common interface.

 Why not function overloading?

150

class Foo

{

public:

char* getName()

{ return “foo”; }

};

class Bar: public Foo

{

public:

char* getName()

{ return “Bar”; }

};

class Car: public Foo

{

public:

char* getName()

{ return “Car”; }

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Review Function Overloading

 Each function performs the same
algorithm and works only on different
data type of object .

 Duplicated code.

 What if need to modify the algorithm?

151

int main(){

Foo myFoo;

Bar myBar;

Car myCar;

processObj(myFoo);

processObj (myBar);

processObj (myCar);

}

processObj(Foo _obj)

{… _obj.getName()…}

processObj(Bar _obj)

{… _obj.getName()…}

processObj(Car _car)

{… _obj.getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 8

Polymorphism

152

class Foo

{

public:

char*

getName()

{ return “foo”; }

};

class Bar : public Foo

{

public:

char*

getName()

{ return “Bar”; }

};

class Car : public Foo

{

public:

char*

getName()

{ return “Car”; }

};

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

processObj(Foo* _obj)

{… _obj->getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

153

class Foo

{

public:

char*

getName()

{ return “foo”; }

};

class Bar: public Foo

{

public:

char*

getName()

{ return “Bar”; }

};

class Car: public Foo

{

public:

char*

getName()

{ return “Car”; }

};

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

processObj(Foo* _obj)

{… _obj->getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

Function Overloading

 Data type is determined

in compiler time.

Dynamic Binding

 Data type is determined

in run time.

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

int main(){

Foo myFoo;

Bar myBar;

Car myCar;

processObj (myFoo);

processObj (myBar);

processObj (myCar);

}

Use the keyword “virtual” as a

prefix of your member function

1542018/9/6 Data Structures © Prof. Ren-Song Tsay

