
Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 1

2018/9/6 Data Structures © Prof. Ren-Song Tsay 129

3.4

Subtyping and
Inheritance in

C++

Object Inheritance

 An object A could be used to define
another object B.

 Both objects and operations of A are
automatically inherited by B.
◦ house can inherit from building

• Advantages:

◦ Simplification of software development

◦ Easy to test and debug

◦ Reusability

◦ Flexibility

1302018/9/6 Data Structures © Prof. Ren-Song Tsay

C++ Inheritance

 Define a class in terms of another

class

◦ easier to create and maintain an application.

 The existing class = base class,

the new class = derived class.

 The derived class is a base class

◦ dog IS-A mammal

 A class can be derived from more than

one classes, i.e. inherit data and

functions from multiple base classes.
2018/9/6 Data Structures © Prof. Ren-Song Tsay 131

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 2

Process Geometry

 If to develop a program to process
various types of geometry.

 Operations on these primitives:
◦ Get number of vertices.

◦ Calculate the area of the primitive.

◦ Check whether it is convex or not.

132

Triangle Rectangle Trapezoid

…

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Implement Using Classes

133

class Rectangle {

public:

Rectangle (){

m_VN = 4;

mp_V = new Point [m_VN];

}

~Rectangle(){

delete [] mp_V;

mp_V = NULL;

}

double CalArea ();

bool isConvex();

int vtxNum() { return m_VN; }

private:

int m_VN;

Point* mp_V;

};

class Triangle {

public:

Triangle (){

m_VN = 3;

mp_V = new Point [m_VN];

}

~Triangle (){

delete [] mp_V;

mp_V = NULL;

}

double CalArea ();

bool isConvex();

int vtxNum() { return m_VN; }

private:

int m_VN;

Point* mp_V;

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

What’s the Problem?

 Duplicated codes in both classes!

 If need to design 100 or more types of

geometry?

 If need to add another “common”

data member or function?

 Will need to maintain all the classes!

1342018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 3

Polygon Base Class

 Polygon is an abstract type of geometry.

 Triangle and rectangle are special

polygons.

 But how do we let the triangle and

rectangle classes share the same code

through using polygon?

 Don’t worry! C++ will be your

lifesaver!

1352018/9/6 Data Structures © Prof. Ren-Song Tsay

Class Inheritance in C++

 A mechanism to relate one class object
to another one.

 Define a “IS-A” relationships between
objects.
◦ Type B IS-A data type of Type A if B is a

specialized version of A and A is more
general than B, e.g., Triangle IS-A Polygon
and Rectangle IS-A Polygon.

 Members (data and functions) in Type A
are implicitly copied to Type B.

 Reusability of code

1362018/9/6 Data Structures © Prof. Ren-Song Tsay

Class Diagram of Inheritance

137

3.4

class

Polygon

class

Triangle

class

Rectangle

“IS-A” relationships

Base class

Derived class
2018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 4

Inherit the Polygon Class

138

3.4

class Polygon {

public:

Polygon (){

m_VN = 0;

mp_V = NULL;

}

~Polygon (){

delete [] mp_V;

mp_V = NULL;

}

double CalArea () { return 0.0;}

bool isConvex() { return true; }

int vtxNum() { return m_VN; }

protected:

int m_VN;

Point* mp_V;

};

class Triangle: public Polygon {

public:

Triangle (){

m_VN = 3;

mp_V = new Point [m_VN];

}

~Triangle (){}

double CalArea ();

};

Class Rectangle: public Polygon {

public:

Rectangle (){

m_VN = 4;

mp_V = new Point [m_VN];

}

~Rectangle (){}

double CalArea ();

};
2018/9/6 Data Structures © Prof. Ren-Song Tsay

Access Specifier of Inheritance

 “class Triangle: public Polygon”

indicates the triangle class inherits all

the non-private members (data and

functions) from Polygon

 The access specifier could be public,

protected and private.

1392018/9/8 Data Structures © Prof. Ren-Song Tsay

https://www.learncpp.com/cpp-tutorial/115-inheritance-and-access-specifiers/

Access Specifier: public

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : public Polygon

{

private:

protected:

public :

};

int x;

int y;

int z;

Int y;

Int z;

//CANNOT ACCESS

private member of base

class

X

1402018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 5

Access Specifier: protected

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : protected
Polygon

{

private:

protected:

public :

};

int x;

int y;

int z;

Int y;

Int z;

X

1412018/9/6 Data Structures © Prof. Ren-Song Tsay

Access Specifier: private

Base Class

class Polygon

{

private:

protected:

public :

};

Derived Class

class Triangle : private Polygon

{

private:

protected:

public :

};

int y;

int z;

Int y;

Int z;

int x; X

1422018/9/6 Data Structures © Prof. Ren-Song Tsay

Specialization

 Some members (data and functions) are
specialized in different class.
◦ Triangle and Rectangle use different area

calculation, e.g., specialized CalArea()
function.

 Put these non-common members in
private block of base class. Derived
class thus cannot access these
members (Optional)

 Re-declare the members (data and
functions) in the derived class.
(overriding)

1432018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 6

Overriding

144

class Polygon {

public:

…

double CalArea () { return 0.0;}

…

};

class Triangle : public Polygon {

public:

…

// overriding CalArea function

double CalArea () {

// calculate triangle area

}

};

Class Rectangle : public Polygon {

public:

…

// overriding CalArea function

double CalArea (){

// calculate rectangle area

/* if you want to access the

original base class function*/

Polygon::CalArea();

}

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Overloading v.s. Overriding

 Function overloading:
◦ Two or more functions with the same name

but different signatures in the same scope or
one in base class and another in derived
class.

 Function overriding:
◦ A different implementation of the same

function in the inherited class.

◦ Functions would have the same signature,
but different implementation.

◦ Only exist in class inheritance.

145

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Last derived
class

2nd derived
class

1st derived
class

Base class

Initialization

 The order of calling constructors:

 The order of calling destructors:

 Use Initialization Lists to initialize base

class in derived class via constructor

146

Base class
1st derived

class
2nd derived

class
Last derived

class

2018/9/6 Data Structures © Prof. Ren-Song Tsay

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding
http://www.cprogramming.com/tutorial/initialization-lists-c++.html

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 7

A Constructor Example

147

class Foo

{

public:

Foo() { std::cout << "Foo's

constructor" << std::endl; }

};

class Bar: public Foo

{

public:

Bar() { std::cout << "Bar's

constructor" << std::endl; }

};

int main(){

Bar bar;

}

Output:

Foo's constructor

Bar's constructor

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

 A mechanism allow you to manipulate

different objects through the

common interface.

 Why not function overloading?

150

class Foo

{

public:

char* getName()

{ return “foo”; }

};

class Bar: public Foo

{

public:

char* getName()

{ return “Bar”; }

};

class Car: public Foo

{

public:

char* getName()

{ return “Car”; }

};

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Review Function Overloading

 Each function performs the same
algorithm and works only on different
data type of object .

 Duplicated code.

 What if need to modify the algorithm?

151

int main(){

Foo myFoo;

Bar myBar;

Car myCar;

processObj(myFoo);

processObj (myBar);

processObj (myCar);

}

processObj(Foo _obj)

{… _obj.getName()…}

processObj(Bar _obj)

{… _obj.getName()…}

processObj(Car _car)

{… _obj.getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Prof. Ren-Song Tsay September 8, 2018

A Quick Review of C++ 8

Polymorphism

152

class Foo

{

public:

char*

getName()

{ return “foo”; }

};

class Bar : public Foo

{

public:

char*

getName()

{ return “Bar”; }

};

class Car : public Foo

{

public:

char*

getName()

{ return “Car”; }

};

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

processObj(Foo* _obj)

{… _obj->getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

153

class Foo

{

public:

char*

getName()

{ return “foo”; }

};

class Bar: public Foo

{

public:

char*

getName()

{ return “Bar”; }

};

class Car: public Foo

{

public:

char*

getName()

{ return “Car”; }

};

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

processObj(Foo* _obj)

{… _obj->getName()…}

2018/9/6 Data Structures © Prof. Ren-Song Tsay

Polymorphism

Function Overloading

 Data type is determined

in compiler time.

Dynamic Binding

 Data type is determined

in run time.

int main(){

Foo* myFoo = new Foo;

Foo* myBar = new Bar;

Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);

}

int main(){

Foo myFoo;

Bar myBar;

Car myCar;

processObj (myFoo);

processObj (myBar);

processObj (myCar);

}

Use the keyword “virtual” as a

prefix of your member function

1542018/9/6 Data Structures © Prof. Ren-Song Tsay

