Prof. Ren-Song Tsay

September 8, 2018

Object Inheritance

» An object A could be used to define

another object B.

» Both objects and operations of A are
automatically inherited by B.
> house can inherit from building

+ Advantages:
> Simplification of software development
> Easy to test and debug
> Reusability
© Flexibility

C++ Inheritance

» Define a class in terms of another
class
- easier to create and maintain an application.
» The existing class = base class,
the new class = derived class.
» The derived class is a base class
> dog IS-A mammal
» A class can be derived from more than
one classes, i.e. inherit data and
functions from multiple base classes.

A Quick Review of C++

Prof. Ren-Song Tsay

Process Geometry

September 8, 2018

A N

Triangle Rectangle

« If to develop a program to process
various types of geometry.

Trapezoid

» Operations on these primitives: ./
> Get number of vertices. j
> Calculate the area of the primitive.« |
> Check whether it is convex or not. "'\i’

Implement Using Classes

class Triangle {
public:
Triangle (){
m_VN=3;
mp_V = new Point [m_VN];

}

~Triangle (){
delete [] mp_V;
mp_V = NULL;

}
double CalArea ();
bool isConvex();
int vixNum() { return m_VN; }
private:
int m_VN;
Point* mp_V;
i

class Rectangle {
public:
Rectangle (){
m_VN = 4;
mp_V = new Point [m_VN];

}

~Rectangle(){
delete [] mp_V;
mp_V = NULL;

}
double CalArea ();
bool isConvex();
int vixNum() { return m_VN; }
private:
int m_VN;
Point* mp_V;
h

What’s the Problem?

 Duplicated codes in both classes!

« If need to design 100 or more types of
geometry?

« If need to add another “common”
data member or function?

« Will need to maintain all the classesl

A Quick Review of C++

Prof. Ren-Song Tsay September 8, 2018

Polygon Base Class

« Polygon is an abstract type of geometry.

« Triangle and rectangle are special
polygons.

» But how do we let the triangle and
rectangle classes share the same code
through using polygon?

w .

j * Don’t worry! C++ will be your
k’/ lifesaver!

=

Class Inheritance in C++

» A mechanism to relate one class object
to another one.

« Define a “IS-A” relationships between
objects.
> Type B IS-A data type of Type AifBis a
specialized version of A and A is more
general than B, e.g., Triangle 1S-A Polygon
and Rectangle I1S-A Polygon.
» Members (data and functions) in Type A
are implicitly copied to Type B.
» Reusability of code

34 Class Diagram of Inheritance |

class
Polygon

Base class

“IS-A” relationships

class class
Triangle Rectangle

Derived class

A Quick Review of C++

Prof. Ren-Song Tsay September 8, 2018

34 Inherit the Polygon Class

class Polygon { class Triangle: public Polygon {
public: public:
Polygon (){ Triangle (){
m_VN =0; m_VN =3;
mp_V = NULL; mp_V = new Point [m_VN];
} }
~Polygon (~Triangle (){}
delete [] mp_V; double CalArea ();
mp_V = NULL; N

} .
double CalArea () { return 0.0 Class Rectangle: public Polygon {
bool isConvex() { return true;} ~ Public:

int vixNum() { return m_VN; } Rectangle_(){
protected: m_VN =4;)
int m_VN; mp_V = new Point [m_VN];
Point* mp_V; }
I8 ~Rectangle (){}
’ double CalArea ();
& |

Access Specifier of Inheritance

« “class Triangle: public Polygon”
indicates the triangle class inherits all
the non-private members (data and
functions) from Polygon

» The access specifier could be public,
protected and private.

https:/www.learncpp.com/cpp-tutorial/115-inheritance-and-access-specifiers/

Access Specifier: public

Base Class Derived Class

class Polygon class Triangle : public Polygon

{ {

private: n .

X private: c ANNOT ACCESS
private member of base
protected: protected?lass
inty; Inty;

public : public :
b ¥

A Quick Review of C++ 4

Prof. Ren-Song Tsay September 8, 2018

Access Specifier: protected

Base Class Derived Class
class Polygon class Triangle : protected
{ Polygon
private: {
X private:
protected: protected:
inty; Inty;
public : //>
public :
k h

Access Specifier: private
Base Class Derived Class
?‘355 Polygon class Triangle : private Polygon
) {
private: X private:
protected: /// L
publiey . protected:
int z;)
public :
k %
Specialization

+ Some members (data and functions) are
specialized in different class.
> Triangle and Rectangle use different area

calculation, e.g., specialized CalArea()
function.

» Put these non-common members in
private block of base class. Derived
class thus cannot access these
members (Optional)

» Re-declare the members (data and
functions) in the derived class.
(overriding)

A Quick Review of C++ 5

Prof. Ren-Song Tsay September 8, 2018

Overriding ‘

class Polygon{

public:
™ double CalArea (){return 0.0}
Y
] Class Rectangle : public Polygon {

class Triangle : public Polygon { REblic

public /I overriding CalArea function
/I overriding CalArea function Ao Cetiea (O

I/l calculate rectangle area

dllotltjzllceulcaa:?{?igrs) fe - /*if you want to access the
} 9 original base class function*/
h Polygon::CalArea();
I8 }
I

Overloading v.s. Overriding

» Function overloading:
= Two or more functions with the same name
but different signatures in the same scope or
one in base class and another in derived

class.
» Function overriding:
> A different implementation of the same
function in the inherited class.
> Functions would have the same signature,
but different implementation.
> Only exist in class inheritance.

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding

145

Initialization ‘

» The order of calling constructors:

Base class 2" derived Last derived
v o

» The order of calling destructors:

Last derived 2" derived
Base class
S chss .

» Use Initialization Lists to initialize base
class in derived class via constructor

A Quick Review of C++

http://www.codeproject.com/Articles/16407/METHOD-Overload-Vs-Overriding
http://www.cprogramming.com/tutorial/initialization-lists-c++.html

Prof. Ren-Song Tsay September 8, 2018

A Constructor Example

class Foo class Bar: public Foo
public: public:
Foo() { std::cout << "Foo's Bar() { std::cout << "Bar's
constructor" << std::endl; } constructor” << std::endl; }
h h
int main(){
Bar bar;
}
Output:

Foo's constructor
Bar's constructor

Polymorphism

» A mechanism allow you to manipulate
different objects through the
common interface.

+ Why not function overloading?

class Foo class Bar: public Foo class Car: public Foo
{ {

public: public: public:

char* getName() char* getName() char* getName()

{ return “foo”; }

h

{ return “Bar”; }

2

{return “Car”; }

h

Review Function Overloading

int main(){ processObj(Foo _obj)
Foo myFoo; {... _obj.getName()...}
Bar myBar;
Car myCar; processObj(Bar _obj)

{... _obj.getName()...}

processObj(myFoo);
processObj (myBar); processObj(Car _car)
) processObj (myCar); {... _obj.getName()...}
» Each function performs the same
algorithm and works only on different

data type of object .
» Duplicated code.
» What if need to modify the algorithm?

A Quick Review of C++ 7

Prof. Ren-Song Tsay

September 8, 2018

class Car : public Foo

public:
‘. char*
getName()
{return “Car”; }

h

processObj(Foo* _obj)

class Foo class Bar : public Foo
{
public: public:
" char* “ww char*
getName() getName()
{ return “foo”; } { return “Bar”; }
h I3
int main(){
Foo* myFoo = new Foo; {...
Foo* myBar = new Bar;
Foo* myCar = new Car;
processObj(myFoo);
processObj(myBar);
processObj(myCar);
}

_obj->getName()...}

Polymorphism

processObj(myFoo);
processObj(myBar);
processObj(myCar);

class Foo class Bar: public Foo class Car: public Foo
{

public: public: public:

virtual char* virtual char* virtual char*
getName() getName() getName()

{ return “foo”; } {return “Bar”; } {return “Car”; }
k h i

int main(){

processObj(Foo* _obj)

9 myFoo = newfFoo {... _obj->getName()...}
or myBar = new Bar;
o myCar = ne ar

Polymorphism

processObj (myFoo);
processObj (myBar);
processObj (myCar);

« Data type is determined « Data type is determined
in compiler time. inrun time.
int main(){ int main(){
Foo myFoo; Foo* myFoo = new Foo;
Bar myBar; Foo* myBar = new Bar;
Car myCar; Foo* myCar = new Car;

processObj(myFoo);

processObj(myBar);

processObj(myCar);
}

Use the keyword “virtual” as a
prefix of your member function

A Quick Review of C++

